Creating A Collage
Inspired by the Work of Lásló Moholy-Nagy

An Art Project for Students in Grades 2-12

Moholy-Nagy, László, Composition (detail), n.d. (ca.1922-23). Paper collage on paper. SBMA
About the Artist

László Moholy-Nagy (1895-1946) was born in Hungary. His importance in the 20th century is based as much on his theories as on his work. His investigated the relationship between space, time, and light and the interaction of man with these forces.

He wrote:

"The reality of our century is technology: the invention, construction and maintenance of machines. To be a user of machines is to be of the spirit of this century."\(^1\)

"Designing is not a profession but an attitude. Design has many connotations. It is the organization of materials and processes in the most productive way, in a harmonious balance of all elements necessary for a certain function. It is the integration of technological, social, and economical requirements, biological necessities, and the psychological effects of materials, shape, color, volume and space."\(^1\)

Moholy sought to convey these ideas not only through the structural rigor of his compositions, but also through his use of new industrial materials as substrates for his paintings.\(^2\)

\(^1\) http://www.art-quotes.com \(^2\) citation: wall text of exhibition
Moholy arrived in Berlin in 1920 and quickly established himself as an important member of the avant-garde community. By 1922 he had firmly established himself as an artist identified with International Constructivism. Moholy’s work was hailed by artists and critics who defined constructivism as a revolutionary ethos, not merely a stylistic designator for hard-edged geometrical abstraction. Constructivism demanded that painting, along with all creative activity, be treated as an organizational feat. Forms and colors were arranged within set limits, be they three-dimensional or flat, in order to maximize their capacity to modernize the perceptual faculties of the viewer. Abstraction was pursued not as a style but as a project intended to examine structures and forms that might help to bring about new ways of seeing, commensurate with the scientific rationality and technical precision demanded by the age.

Moholy began to study the function and effect of light, and from the mid-1920s he experimented with new industrial materials such as aluminum, plastic, and celluloid. Aluminum had associations with new technology and also satisfied Moholy-Nagy’s desire to, as he put it, ‘paint with light’, since the material was reflective.

These values were prized at the Bauhaus (founded in 1919 by Walter Gropius to provide a new sort of artistic training), especially after Gropius announced the necessity to unify art with technology in 1924, the year Moholy was appointed to the faculty.

At the Bauhaus school an artist no longer had to choose between art and design, but was instead given an all-round education which would allow him to use his knowledge of art and materials to make a more functional art, often involved in industrial design.

Moholy-Nagy, László, Untitled, 1924, SBMA

2 cite wall text from exhibition
In his work, Moholy “stuck to a vocabulary of simple forms — circles, arced segments, rectangles and other basic shapes — he researched different combinations set against a number of supports whose characteristics related specifically to newly developed industrial materials like plastics, enamel, and metal alloys. These abstract pictures were meant to introduce the viewer to a new way of seeing the world unbounded by tradition and infused with the dynamism of the modern present. ³

In 1937 Moholy went to Chicago, where he directed the New Bauhaus for a year and then set up his own School of Design, which he ran on Bauhaus principles until his death in Chicago on Nov. 24, 1946.

Moholy passionately believed in his concepts of design and teaching and worked tirelessly to accomplish his goals. It is in large part owing to him that Bauhaus ideas became thoroughly infused into American and international design. Many modern technological products that are known for their sleek, utilitarian, and streamlined features demonstrate the design principles established and advocated by László Moholy-Nagy.

³ cite wall text from exhibition
In this lesson (a Master Study), students will:

- look carefully at a collage by Lásló Moholy-Nagy
- think about his process, use of materials, and compositional choices
- experiment with similar materials
- apply the elements of art and principles of design
- create an original work

This project allows students an opportunity to experiment with composition and to stick to “a vocabulary of simple forms — circles, arced segments, rectangles and other basic shapes.”

3 cite wall text from exhibition
Materials used in this project:

- a support for the collage (e.g. a trimmed piece of a cardboard box)
- non-bleeding tissue paper
- scissors
- watered-down white glue (2/3 glue to 1/3 water)
- a stiff paint brush
- scissors

Optional: a container of water for rinsing the brush between applications of glue, paper towels
Begin by projecting this image (use the next slide). Ask students to respond to all or some of these questions:

What strikes you about this image? What do you notice? Why?

How do the pieces of this collage relate to each other? How are they connected yet separate?

How has the artist achieved the effect of dimensionality?

What do you think is the visual focal point of the piece? Why?

Where can you find examples of different values?

How did Moholy-Nagy use negative and positive space?

What single word describes how this image makes you feel? Why?
Moholy-Nagy, László, Composition (detail), n.d. (ca.1922-23).
Paper collage on paper. SBMA
Next, tell students:

Your artful invitation is to create a collage that is inspired by this work of Moholy-Nagy. The idea is not to copy the work, but to include similar key elements and principles of design. Which elements of art and principles of design do you notice in this collage?

As students share their observations and point out the key elements and design principles, record their ideas on the board.

Possible observations might include:

- a contrasting, solid color background
- the use of lines and geometric shapes
- overlapping lines and shapes
- different values
- papers of varying degrees of transparency and opacity
- positive and negative space within the composition
- balance and unity
- a visual focal point

Three different responses to the Artful Invitation.
Invite students to select several tissue paper squares of different colors, and experiment with composition and placement. Ask students to notice what happens when they change the arrangement by overlapping the shapes. How does each arrangement (of the different colored squares) and the varying degree of transparency of each color affect the total composition?
Next, experiment with different shapes. Consider cutting the squares into rectangles, and adding circles, half circles, and lines. Note the negative space between the two white rectangles in the image on the right. How does this affect the composition?
Continue to experiment with various placements of tissue paper shapes. Note that the opaque black square is more than another color – it adds weight to the overall composition.
A cut-out circle or arced shape could add interest and/or a focal point.
SBMA Teaching Artist Itoko Maeno continues to experiment with her composition.
Color selection is important.

Ask students:

What difference do you notice between the top and bottom images?

Which color selection do you prefer? Why?
When the composition is complete, begin to adhere the pieces of tissue paper to the cardboard support. Apply watered-down white glue with a stiff brush. It can be useful to sketch or photograph the composition before moving the collage papers around during the gluing process.
Some tissue papers (the lighter colors) will seem to almost dissolve into the background. They will become less transparent as they dry.
As the composition builds, layer by layer, students may decide to change some of their original ideas.
Note how this artist decided to add a narrow white rectangle over the larger white rectangle. How does this change the composition?
When students are satisfied with their collages it is time to trim the tissue papers, allowing the edges to extend beyond the support by at least ½".
Turn the collage over, and wrap the extending tissue paper edges around the back side of the cardboard support. This adds a finished appearance to the work.
As pointed out previously, note that the lighter-colored tissue papers become less transparent as they dry.

Students can observe varying layers of transparency and opacity in this completed piece.

Now it is their turn to create collages inspired by the work of Lázló Moholy-Nagy.
Connections to the Standards
From the National Visual Arts Standards

Creating / Conceiving and developing new artistic ideas and work.
- Anchor Standard #1. Generate and conceptualize artistic ideas and work.
- Anchor Standard #2. Organize and develop artistic ideas and work.
- Anchor Standard #3. Refine and complete artistic work.

Grade 4
VA:Cr2.1.4 Explore and invent art-making techniques and approaches.
Grade 5
VA:Cr2.1.5 Experiment and develop skills in multiple art-making techniques and approaches through practice.
VA:Cr2.3.5 Identify, describe, and visually document places and/or objects of personal significance.

Responding / Understanding and evaluating how the arts convey meaning.
- Anchor Standard #7. Perceive and analyze artistic work.
- Anchor Standard #8. Interpret intent and meaning in artistic work.
- Anchor Standard #9. Apply criteria to evaluate artistic work.

Grade 4
VA:Re8.1.4 Interpret art by referring to contextual information and analyzing relevant subject matter, characteristics of form, and use of media.
VA:Re9.1.4 Apply one set of criteria to evaluate more than one work of art.
Grade 5
VA:Re8.1.5 Interpret art by analyzing characteristics of form and structure, contextual information, subject matter, visual elements, and use of media to identify ideas and mood conveyed.
Grade 5
VA:Re9.1.5 Recognize differences in criteria used to evaluate works of art depending on styles, genres, and media as well as historical and cultural contexts.
Grades 6 – 8
VA:Re8.1.8a Interpret art by distinguishing between relevant and non-relevant contextual information and analyzing subject matter, characteristics of form and structure, and use of media to identify ideas and mood conveyed.
HS
VA:Re9.1.IIIa Construct evaluations of a work of art or collection of works based on differing sets of criteria.

Connecting / Relating artistic ideas and work with personal meaning and external context.
- Anchor Standard #10. Synthesize and relate knowledge and personal experiences to make art.

Grade 5
VA:Cn10.1.5a Apply formal and conceptual vocabularies of art and design to view surroundings in new ways through art-making.
HS
VA:Cn10.1.Ia Document the process of developing ideas from early stages to fully elaborated ideas.
Connections to the CCSS (Math):

Reason with shapes and their attributes.

CCSS.MATH.CONTENT.2.G.A.1
Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces. Identify triangles, quadrilaterals, pentagons, hexagons, and cubes.

CCSS.MATH.CONTENT.2.G.A.2
Partition a rectangle into rows and columns of same-size squares and count to find the total number of them.

CCSS.MATH.CONTENT.2.G.A.3
Partition circles and rectangles into two, three, or four equal shares, describe the shares using the words halves, thirds, half of, a third of, etc., and describe the whole as two halves, three thirds, four fourths. Recognize that equal shares of identical wholes need not have the same shape.

CCSS.MATH.CONTENT.3.G.A.1
Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.

CCSS.MATH.CONTENT.5.G.B.3
Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles.

CCSS.MATH.CONTENT.5.G.B.4
Classify two-dimensional figures in a hierarchy based on properties.
This lesson was created by Joni Chancer, SBMA Curriculum Consultant.

Credits and permissions:

This presentation was created by SBMA for instructional use only and is not to be altered in any way, or reproduced without attribution.

Artwork was created by SBMA Teaching Artists.

For further information about these or other Education and Outreach Programs, contact Rachel Krieps at rkrieps@sbma.net